If a+b+c=0 , then find the value of ..... (-2a)^3 + (-2b)^3 + (-2c)^3 - 3 (-2a)(-2b)(-2c)............. plzzzz answer me fast I will mark your answer as brainlist
Answers
Answer:
0
Step-by-step explanation:
Given Equation is (-2a)³ + (-2b)³ + (-2c)³ - 3(-2a)(-2b)(-2c)
Now,
∴ a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² - ab - bc - ca)
⇒ (-2a)³ + (-2b)³ + (-2c)³ - 3(-2a)(-2b)(-2c) = (0)[a² + b² + c² - ab - bc - ca]
⇒ (-2a)³ + (-2b)³ + (-2c)³ = 0.
Hope it helps!
We know that=>
a+b+c = 0
To find=>
(-2a)^3 + (-2b)^3+(-2c)^3 -3(-2a)(-2b)(-2c)
Now, We have
(a+b+c)^3
=>a^3+b^3+c^3 + 3(a+b)(b+c)(a+c).
By using this identity we put=>
(-2a)^3 + (-2b)^3+(-2c)^3 -3(-2a)(-2b)(-2c)
=>(-2a-2b-2c)^3
=>{-2(a+b+c)}^3
(Taking -2 common from the terms)
=>{-2(0)}^3 (Since a+b+c = 0)
=>0
(since anything multiplied by 0 is 0)
Hence,the value of (-2a)^3 + (-2b)^3 + (-2c)^3 - 3 (-2a)(-2b)(-2c) will be 0.
Remember
The identity used here=>
(a+b+c)^3
=>a^3+b^3+c^3 + 3(a+b)(b+c)(a+c).
Also, remember
(a+b)^3 = a^3 + b^3 + 3a^2b + 3ab^2