if a+b+c=0 then show that
Attachments:
Answers
Answered by
2
given,
a + b + c = 0
1/( x^b + x^-c +1) + 1/( x^c + x^-a +1) + 1/( x^a + x^-b +1) = 1
step 1 :-
1/( x^b + x^-c +1) = 1/( x^b + 1/x^c + 1)
=x^c/{ x^( b+ c) + 1 + x^c }
= x^c/{ x^-a + 1 + x^c }
{ a + b + c =0 so, b + c = -a
=x^c/{ 1/x^a + 1 + x^c }
=x^( c + a)/{ 1 + x^a + x^( c + a) }
= x^-b/( 1 + x^a + x^-b ) -------(1)
step 2 :-
1/( x^c + x^-a + 1) = 1/( x^c + 1/x^a + 1 )
= x^a/{ x^( c + a) + 1 + x^a }
=x^a/( x^-b + 1 + x^a ) ------(2)
step 3 :- put equation (1) and (2) in
1/( x^b + x^-c +1) +1/( x^c + x^-a +1) +1/( x^a + x^-b +1)
e.g
x^-b/( 1+ x^a + x^-b) + x^a /( x^-b + 1 +x^a )
+ 1/( x^a + x^-b + 1)
=( x^a + x^-b+1)/( x^a +x^-b +1)
=1
hence proved ///
a + b + c = 0
1/( x^b + x^-c +1) + 1/( x^c + x^-a +1) + 1/( x^a + x^-b +1) = 1
step 1 :-
1/( x^b + x^-c +1) = 1/( x^b + 1/x^c + 1)
=x^c/{ x^( b+ c) + 1 + x^c }
= x^c/{ x^-a + 1 + x^c }
{ a + b + c =0 so, b + c = -a
=x^c/{ 1/x^a + 1 + x^c }
=x^( c + a)/{ 1 + x^a + x^( c + a) }
= x^-b/( 1 + x^a + x^-b ) -------(1)
step 2 :-
1/( x^c + x^-a + 1) = 1/( x^c + 1/x^a + 1 )
= x^a/{ x^( c + a) + 1 + x^a }
=x^a/( x^-b + 1 + x^a ) ------(2)
step 3 :- put equation (1) and (2) in
1/( x^b + x^-c +1) +1/( x^c + x^-a +1) +1/( x^a + x^-b +1)
e.g
x^-b/( 1+ x^a + x^-b) + x^a /( x^-b + 1 +x^a )
+ 1/( x^a + x^-b + 1)
=( x^a + x^-b+1)/( x^a +x^-b +1)
=1
hence proved ///
Similar questions
Computer Science,
8 months ago
Science,
8 months ago
Geography,
1 year ago
Social Sciences,
1 year ago
Psychology,
1 year ago