Math, asked by rohannash884, 3 months ago

If A⅓ + b⅔ + c =0 then show that (a + b + c³)³ = 27ab²c³​

Answers

Answered by ravi2303kumar
1

Step-by-step explanation:

a⅓ + b⅔ + c = 0

=> (a⅓ + b⅔ + c)³ = 0³

=> (a⅓)³ + (b⅔)³ + c³ - 3(a⅓ * b⅔ * c) = 0

=> (a⅓)³ + (b⅔)³ + c³  =  3a⅓ b⅔ c

=> a+b²+c³ =  3a⅓ b⅔ c

on cubing both sides,

=>  (a+b²+c³)³ =  (3a⅓ b⅔ c)³

=>  (a+b²+c³)³ =  3³(a⅓ )³(b⅔)³ c³

=>  (a+b²+c³)³ =  27ab²c³  , which is the required equation

Hence proved

Similar questions