If a + b + c = 0, Then Show That
Answers
Given :--
- a + b + c = 0
To Show :-
- 1/( x ^b + x ^ (-c) + 1 ) + 1/( x ^ c + x ^(-a) + 1 ) + 1/( x ^a + x^(-b) + 1 ) = 1 ??
Solution :-
→ 1/( x ^b + x ^ (-c) + 1 ) + 1/( x ^ c + x ^(-a) + 1 ) + 1/( x ^a + x^(-b) + 1 ) = 1
Let us Solve by Taking LHS First 2 parts Individually first :-
→ 1/( x ^b + x ^ (-c) + 1 )
Multiply & Divide by x^(-b) we get,
→ [ 1/( x ^b + x ^ (-c) + 1 ) ] * [ x^(-b) / x^(-b) ]
Denominator Becomes :-
→ x^(-b) [ ( x ^b + x ^ (-c) + 1 ) ]
→ x^(-b + b) + x^(-b - c) + x^(-b) * 1 { using a^b * a^c = a^(b+c) }
→ x^0 + x^(-b - c) + x^(-b)
Now, Given that, a + b + c = 0, so, we get, a = ( - b - c) , Putting This value and x^0 = 1 , we get,
→ 1 + x^a + x^(-b)
Than our Entire Part becomes ,
→ x^(-b) / (x ^a + x^(-b) + 1 ) ---------------Equation (1) .
_______________________
Now, Similarly , Solving Second part :-
→ 1/( x ^ c + x ^(-a) + 1 )
Multiply & Divide by x^a This time we get,
→ [ 1/( x ^ c + x ^(-a) + 1 ) ] * (x^a / x^a)
→ [x^a / {x^a(x ^ c + x ^(-a) + 1 ) } ]
→ [x^a /{ x^(a + c) + 1 + x^a ) } ]
Now, a + b + c = 0 , so, a + c = (-b),,
→ [ x^a /{ x^(-b) + 1 + x^a ) } ]
→ x^a / (x ^a + x^(-b) + 1 ) ------------------ Equation (2)
________________________
Putting both Value From Equation (1) & (2) Now, in Question we get,
→ 1/( x ^b + x ^ (-c) + 1 ) + 1/( x ^ c + x ^(-a) + 1 ) + 1/( x ^a + x^(-b) + 1 ) = 1
Putting values :-
→ [ x^(-b) / (x ^a + x^(-b) + 1 ) ] + [x^a / (x ^a + x^(-b) + 1 )] + [ 1/( x ^a + x^(-b) + 1 ) ] = 1
Taking LCM of LHS, now we get, { since, Denominator are same in Each Now.}
→ [ ( x ^a + x^(-b) + 1 ) / ( x ^a + x^(-b) + 1 ) ] = 1
→ 1 = 1 (Hence, Proved).
_________________________
Answer:
If a + b + c = 0, then the value of (a+b)^2, (ab)+(b+c)^2,(bc)+(c+a)^2,(ca)is. ... Prove that : `|(bc -c^2,ca-b^. play. 3:54 · If `a + b + c = 0`, then the .