Math, asked by rohitsingh4524, 1 year ago

If a+b+c=0, then write the value of a2/bc+b2/ca+c2/ab

Answers

Answered by mysticd
870

Answer:

Value of \frac{a^{2}}{bc}+\frac{b^{2}}{ca}+\frac{c^{2}}{ab} = $3$

Explanation:

Given a+b+c=0 ----(1)

we know the algebraic identity:

\boxed { a^{3}+b^{3}+c^{3}\\=(a+b+c)(a^{2}+b^{2}+c^{2}-ab-bc-ca)+3abc}

Value of \frac{a^{2}}{bc}+\frac{b^{2}}{ca}+\frac{c^{2}}{ab}

= \frac{a^{3}}{abc}+\frac{b^{3}}{abc}+\frac{c^{3}}{abc}

= \frac{a^{3}+b^{3}+c^{3}}{abc}

= \frac{(a+b+c)(a^{2}+b^{2}+c^{2}-ab-bc-ca)+3abc}{abc}

= \frac{0\times(a^{2}+b^{2}+c^{2}-ab-bc-ca)+3abc}{abc}

/* from (1) */

= \frac{3abc}{abc}

= $3$

Therefore,

Value of \frac{a^{2}}{bc}+\frac{b^{2}}{ca}+\frac{c^{2}}{ab} = $3$

•••

Answered by malo5912
140

Step-by-step explanation:

Hope you understand Pl mark the brainliest

Attachments:
Similar questions