Math, asked by chiragnor135, 1 year ago

If a+b+c=10 and a^2+b^2+c^2=25 find the value of a^3+b^3+c^3-3abc

Answers

Answered by sourinkrillex37
0
The answer is here...
Attachments:
Answered by ankurbadani84
0

Answer:

-125

Step-by-step explanation:

A+b+c= 10 and a 2 + b 2 +c 2 =25, find the value of a 3 +b 3 +c 3 -3abc  

Consider the formula - a³+b³+c³- 3abc = (a+b+c) (a²+b²+c²-(ab+bc+ca))

We have to find ab+bc+ca

given a+b+c = 10

Squaring on both sides we get,

(a+b+c)² = 10²

a²+b²+c² + 2(ab+bc+ca) = 100

2 (ab+bc+ca) = 75

ab + bc + ca = 37.5

Now, a³+b³+c³-3abc = (a+b+c) (a²+b²+c²-(ab+bc+ca))

Putting the values we get

10 ( 25 -37.5)

10 x -12.5

-125

Similar questions