If a+b+c=10 and ab+bc+ca=12 then find the value of a³ +b³+c³-3abc.
Answers
Answered by
2
a³+b³+c³-3abc= (a+b+c)(a²+b²+c²-ab-bc-ca)...............(1)
we have,
a+b+c=10.........(2),
ab+bc+ca=12.........(3)
we have to find the value of a²+b²+c²
so,
(a+b+c)²=a²+b²+c²+2(ab+bc+ca)
10²=a²+b²+c²+2(12)
a²+b²+c²= 100-24 = 76.........(4)
put (2),(3),(4) in equation (1)
we, get
a³+b³+c³-3abc= 10[76-(12)]
= 10(64)
= 640
Answered by
1
Answer:
640
Step-by-step explanation:
a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca).....(1)
a+b+c=10
ab+bc+ca=12
to find a2+b2+c2:
(a+b+c)^2=a2+b2+c2+2(ab+bc+ca)
10^2-2(12)=a2+b2+c2
a2+b2+c2=100-24
a2+b2+c2=76
substituting in (1)
a3+b3+c3-3abc=(10)(76-(ab+bc+ca))
a3+b3+c3-3abc=(10)(76-12)
a3+b3+c3-3abc=(10)(64)
a3+b3+c3-3abc=640
:):):):):):)
Similar questions
English,
6 months ago
Music,
11 months ago
Computer Science,
11 months ago
Physics,
1 year ago
Math,
1 year ago