Math, asked by Sivababu2732, 10 months ago

If a + b + c = 11 and ab + bc + ca = 17, then what is the value of a3 + b3 + c3 – 3abc?

A) 121 B) 168 C) 300 D) 770

Answers

Answered by TrickYwriTer
6

Step-by-step explanation:

Given -

  • a + b + c = 11
  • ab + bc + ca = 17

→ -(-ab - bc - ca) = 17

→ -ab - bc - ca = -17

To Find -

  • Value of a³ + b³ + c³ - 3abc

As we know that :-

  • a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² - ab - bc - ca)

Now,

a + b + c = 11

Squaring both sides :-

→ (a + b + c)² = (11)²

→ a² + b² + c² + 2(ab + bc + ca) = 121

→ a² + b² + c² + 2(17) = 121

→ a² + b² + c² = 121 - 34

→ a² + b² + c² = 87

Now,

→ a³ + b³ + c³ - 3abc = (11)(87 - 17)

→ a³ + b³ + c³ - 3abc = 11 × 70

→ a³ + b³ + c³ - 3abc = 770

Hence,

Option 3 is correct.

Answered by Anonymous
24

\large{\mathbb{\underline{\underline{ANSWER}}}}

GIVEN:-

  • a+b+c=11 and ab+bc+ca=17

TO FIND:-

 a^3+b^3+c^3-3abc

a^3+^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)

  • How To solve?

  • We have to find the value of those which are not given

  • We have to find the value of  a^2+b^2+c^2

  • For this we have to use another identity i.e.  (a+b+c)^2

Now,

 (a+b+c)^2=a^2+b^2+c^2+2ab+2ac+2bc

 11^2=a^2+b^2+c^2+2(17)

 121-34=a^2+b^2+c^2

 a^2+b^2+c^2=87

Atq.

Put the given values

\implies{a^3+^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)}

\implies{a^3+^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-(ab+bc+ac)}

\implies{(11)(87-17)}

\implies{(11)(70)}

 770

Hence,the answer is D-770

Similar questions