if a+b+c=11 and ab+ bc+.ca=2 find a^3+ b^3+c^3-3abc=?
Answers
Answer:
a3+b3+c3-3abc=-205
Step-by-step explanation:
We know that:
x3+y3+z3-3xyz=(x+y+z) (x2+y2+z2-xy-yz-zx)
let;
x=a, y=b, z=c
a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca)
a3+b3+c3-3abc=(6)(a2+b2+c2)-(ab+bc+ca)
a3+b3+c3-3abc=6(a2+b2+c2)-(11) (OR) (OR)
a3+b3+c3-3abc=6(a+b+c)(a+b+c)-11 =6(12)-11 =6+12-11
a3+b3+c3-3abc=6x6x6-11 =72-11 =19-11
a3+b3+c3-3abc=216-11 =61 =08
a3+b3+c3-3abc=-205
hope it will help you
pls mark it as brainliest
Good luck!!
Given, a + b + c = 6 and ab + bc + ca = 11
Now, a^3 + b^3 + c^3 - 3abc = (a + b + c) (a^2 + b^2 + c^2 - ab - bc - ca)
Again, (a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca
⇒ a^2 + b^2 + c^2 = (a + b + c)^2 - 2 (ab + bc + ca)
⇒ a^2 + b^2 + c^2 = (6)2 - 2 (11) = 36 - 22 = 14
⇒a^3 + b^3 + c^3 - 3abc = (a + b + c) [a^2 + b^2 + c^2 - (ab + bc + ca)]
⇒a^3 + b^3 + c^3 - 3abc = (6) [14 - (11)]
⇒a^3 + b^3 + c^3 - 3abc = (6) [14 - (11)] = 6(3) = 18
hope it helps u
Mark me as brainlest....