Math, asked by nukalasrija, 11 months ago

If a+b+c=11 and ab+bc+ca=36 find the value of a2+b2+c2

Answers

Answered by Seyonathapa8107
20

Answer: a²+b²+c²=49

Step-by-step explanation:

(a+b+c)² = a²+b²+c²+2ab+2bc+2ca

(11)² = a²+b²+c²+2(ab +bc +ca)

121= a²+b²+c² +2(36)

121-72 =a²+b²+c²

49=a²+b²+c²

Answered by PoojaBurra
7

Given,

a + b + c = 11

ab + bc + ca = 36

To Find,

a^{2} + b^{2} + c^{2} = ?

Solution,

We can solve the question using the following ways:

From the formula,

(a + b + c)^{2}  = a^{2}  + b^{2}  + c^{2}  + 2(ab + bc + ca)

Substituting the given values,

(11)^{2}  = a^{2} +  b^{2}  + c^{2}  + 2(36)

121 = a^{2} +  b^{2}  + c^{2}  + 72

49 = a^{2} +  b^{2}  + c^{2}

Hence, the value of a^{2} + b^{2} + c^{2} is equal to 49.

Similar questions