if a+b+c=12,a^2 +b^2+c^2=90 find the value of a^3 +b^3+c^3_3abc
Answers
Answered by
3
Answer:
a³+b³+c³-3abc = 756
Step-by-step explanation:
a+b+c=12 & a²+b²+c²=90
(a+b+c)²=a²+b²+c²+2ab+2bc+2ca
(12)²= 90+2(ab+bc+ca)
144-90=2(ab+bc+ca)
54=2(ab+bc+ca)
27=ab+bc+ca
a³+b³+c³-3abc =(a+b+c) (a²+b²+c²-ab-bc-ca)
= (12)(90-27)
= 12×63
= 756
Hope you have got it
Similar questions