Math, asked by kumarsujeet192, 11 months ago

if a+b+c=12,a^2 +b^2+c^2=90 find the value of a^3 +b^3+c^3_3abc​

Answers

Answered by rishabh8670
3

Answer:

a³+b³+c³-3abc = 756

Step-by-step explanation:

a+b+c=12 & a²+b²+c²=90

(a+b+c)²=a²+b²+c²+2ab+2bc+2ca

(12)²= 90+2(ab+bc+ca)

144-90=2(ab+bc+ca)

54=2(ab+bc+ca)

27=ab+bc+ca

a³+b³+c³-3abc =(a+b+c) (a²+b²+c²-ab-bc-ca)

= (12)(90-27)

= 12×63

= 756

Hope you have got it

Similar questions