If a+b+c=12 and a^2+b^2+c^2=64 find the value of ab+bc+ac
Answers
Answer: A/Q, the given values are
a+b+c = 12
a^2 + b^2 + c^2 = 64
Now, the value we need to find is ab + bc + ca. This can be determined by using the expansion of (a + b + c)^2
(a + b + c)^2 = (a^2 + b^2 + c^2) + 2 (ab + bc + ca)
2 (ab+bc+ca) = (a+b+c)^2 - (a^2+b^2+c^2)
(ab+bc+ca) = [(a+b+c)^2 - (a^2+b^2+c^2)]/2
= [(12^2) - (64)]/2
= (144 - 64)/2
= 80/2
ab + bc + ca = 40
Therefore,
ab + bc + ca = 40
Step-by-step explanation:
We know a Algebraic Identity :
(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ac
Substitute The Values
⇒ 12² = 64 + 2ab + 2bc + 2ac
⇒ 12² = 64 + 2(ab + bc + ac)
⇒ 144 = 64 + 2(ab + bc + ac)
Subtracting 64 from Both Sides
⇒ 144 - 64 = 64 + 2(ab + bc + ac) - 64
⇒ 80 = 2(ab + bc + ac)
Dividing Both Sides by 2
⇒ 80/2 = [2(ab + bc + ac)]/2
⇒ 40 = ab + bc + ac