if
a+b+c= 12 , and
{a}^{2} + {b}^{2} + {c }^{2} = 90a2+b2+c2=90
find the value of
{a}^{3} + {b}^{3} + {c}^{3} - 3abca3+b3+c3−3abc
Answers
Answered by
0
its
=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)
=12×(90-ab-(12-a-b)(a+b)
now I think you can solve further by opening it
=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)
=12×(90-ab-(12-a-b)(a+b)
now I think you can solve further by opening it
Answered by
0
Answer:
756
Step-by-step explanation:
A+b+c= 12 and a 2 + b 2 +c 2 = 90, find the value of a 3 +b 3 +c 3 -3abc
Consider the formula - a³+b³+c³- 3abc = (a+b+c) (a²+b²+c²-(ab+bc+ca))
We have to find ab+bc+ca
given a+b+c = 12
Squaring on both sides we get,
(a+b+c)² = 12²
a²+b²+c² + 2(ab+bc+ca) = 144
2 (ab+bc+ca) = 54
ab + bc + ca = 27
Now, a³+b³+c³-3abc = (a+b+c) (a²+b²+c²-(ab+bc+ca))
Putting the values we get
12 (90 - 27)
12 x 63
756
Similar questions