if a+b+c=12 and a²+b²+c²=64 find the value of ab+bc+ac
Answers
Answered by
4
Answer:
40 = ab+bc+ac
Step-by-step explanation:
Given,
a + b + c = 12 , a²+b²+c²=64
We know that,
(a + b + c)²= a²+b²+c²+ 2(ab+bc+ac)
(12)²= 64 + 2 ( ab+bc+ac)
144-64= 2(ab+bc+ac)
80/2 = ab+bc+ac
40= ab+bc+ac
I hope this will help you!
please mark me as brainlist
Answered by
0
We know a Algebraic Identity :
(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ac
Substitute The Values
⇒ 12² = 64 + 2ab + 2bc + 2ac
⇒ 12² = 64 + 2(ab + bc + ac)
⇒ 144 = 64 + 2(ab + bc + ac)
Subtracting 64 from Both Sides
⇒ 144 - 64 = 64 + 2(ab + bc + ac) - 64
⇒ 80 = 2(ab + bc + ac)
Dividing Both Sides by 2
⇒ 80/2 = [2(ab + bc + ac)]/2
⇒ 40 = ab + bc + ac
Similar questions