Math, asked by insha7973, 1 year ago


integration \:  \:    \frac{sin(x - a)}{sin(x + a)} dx




please koi tu ans do​

Answers

Answered by sanish
1

Answer:

Heya Buddy, Here's The Answer:-

I= ∫ (sinx-a/sinx+a)dx

Put x+a = t, so that dx=dt

Thus,

I= ∫ [sin(t-2a) /sint]dt

[Since(sina-b=sina cosb-cosa sinb)]

I = ∫(sint cos2a -cost sin2a/sint )dt

I = ∫ (cos 2a - cott sin2a)dt

I=∫(t cos2a -sin2a log{sint}) +c

I= ∫ [(x+a)cos2a-sin2a.log sin(x+a)] + c

Hope It Helps...

Similar questions