If a+b+c = 12, and ab+bc+ca = 22, then find the value of a^2+b^2+c^2
Answers
Answered by
6
GIVEN :
a+b+c=12
ab+bc+ca=22
a^2+b^2+c^2=?
We know that
(a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ba)
(12)^2=a^2+b^2+c^2+2(22)
144=a^2+b^2+c^2+44
144-44=a^2+b^2+c^2
100=a^2+b^2+c^2
Answered by
3
Step-by-step explanation
▪️A/Q, the given values are
▪️a+b+c = 12
▪️a^2 + b^2 + c^2 = 64
▪️Now, the value we need to find is ab + bc + ca. This can be determined by using the expansion of (a + b + c)^2
▪️(a + b + c)^2 = (a^2 + b^2 + c^2) + 2 (ab + bc + ca)
▪️2 (ab+bc+ca) = (a+b+c)^2 - (a^2+b^2+c^2)
▪️(ab+bc+ca) = [(a+b+c)^2 - (a^2+b^2+c^2)]/2
▪️= [(12^2) - (64)]/2
▪️= (144 - 64)/2
▪️= 80/2
▪️ab + bc + ca = 40
▪️Therefore,
▪️ab + bc + ca = 40
Hopes it help you❤️❤️
Similar questions
English,
4 months ago
English,
4 months ago
Physics,
8 months ago
Computer Science,
8 months ago
Science,
11 months ago
Social Sciences,
11 months ago
English,
11 months ago