Math, asked by Naina1907, 8 months ago

if a+b+c=13 and ab+bc+ca=84 find a^2+b^2+c^2​

Answers

Answered by biligiri
14

Answer:

given a+b+c = 13 and ab+bc+ca = 84

to find a²+b²+c²

(a+b+c)² = a²+b²+c² + 2(ab+bc+ca)

13² = a²+b²+c² + 2(84)

169 = a²+b²+c²+168

therefore a²+b²+c² = 169 - 168 = 1

Answered by Anonymous
19

Answer:

1

Step-by-step explanation:

Given, \\ a + b + c = 13 \\ ab + bc + ca = 84 \\ Since, {(a + b + c )}^{2}  =  {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2(ab + bc + ca ) \\  =  >  {13}^{2}  =  {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2 \times 84 \\  =  > 169 =  {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 168 \\  =  >  {a}^{2}  +  {b}^{2}  +  {c}^{2}  = 169 - 168 \\  =  >  {a}^{2}  +  {b}^{2}  +  {c}^{2}  = 1

Hope it helps you......✔✔✔

\huge{\blue{\fbox{\purple{\bigstar{\mathbf{\red{Please\:Follow\:Me}}}}}}}

Similar questions