Math, asked by Sagar572007, 2 months ago

If (a + b + c) =14 and (a sq + b sq + c sq) =74, find the value of (ab + bc + ca).​

Answers

Answered by AmalVerma
3

Step-by-step explanation:

(a + b + c) = 14

 {(a + b + c)}^{2}  =  {14}^{2}

 {(a + b + c)}^{2}  = 196

 {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2ab + 2bc + 2ac = 196

 ({a}^{2}  +  {b}^{2}  +  {c}^{2})  + 2ab + 2bc + 2ac = 196

74  + 2ab + 2bc + 2ac = 196

2(ab + bc + ac) = 196 - 74

2(ab + bc + ac) = 122

ab + bc + ac =  \frac{122}{2}

ab + bc + ac = 61

Answered by sachirai
0

Answer:

61

Step-by-step explanation:

(a + b + c) =14 and (a sq + b sq + c sq) =74, find the value of (ab + bc + ca).

than,(a+b+c)^2=14^2

(a+b+c)^2=a^2+b^2+c^2+[2(ab+bc+ca)]=14×14=196

74+2(ab+bc+ca)=196

ab+bc+ca=(196-74)/2=61

ab+bc+ca=61

Thank you ☺☺

Similar questions