If a + b + c = 15 and a 2 + b 2 + c 2 = 83, find the value of a 3 + b 3 + c 3 – 3abc.
Answers
Answer:
a³+b³+c³-3abc = 180
Step-by-step explanation:
Given,
a+b+c = 15 ----(1)
a²+b²+c² = 83 ---(2)
We know the algebraic identity:
a²+b²+c²+2(ab+bc+ca) = (a+b+c)²
=> 83 + 2(ab+bc+ca) = 15²
/* from (1) & (2) */
=> 2(ab+bc+ca) = 225 - 83
=> 2(ab+bc+ca) = 142
=> ab+bc+ca = 142/2
=> ab+bc+ca = 71 ----(3)
Now ,
By the algebraic identity :
a³+b³+c³-3abc
= (a+b+c)[a²+b²+c²-(ab+bc+ca)]
= 15(83-71)/*From (1),(2)&(3) */
= 15 × 12
= 180
Therefore,
a³+b³+c³-3abc = 180
Step-by-step explanation:
Given: a + b + c = 15, a² + b² + c² = 83
∴ (a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
⇒ 15² = 83 + 2(ab + bc + ca)
⇒ 225 - 83 = 2(ab + bc + ca)
⇒ 142 = 2(ab + bc + ca)
⇒ ab + bc + ca = 71
Now,
a³ + b³ + c³ - 3abc:
= (a + b + c)(a² + b² + c² - ab - bc - ca)
= (a + b + c)(a² + b² + c² - (ab + bc + ca))
= (15)(83 - 71)
= 180.
Hence, the value of a³+b³+c³-3abc is 180
Hope it helps!