If a + b + c = 15 and a²+ b²+ c²= 83, find the value of a³+ b³+ c³–3abc.
Answers
Answer:
hey mate here is ur answer
Step-by-step explanation:
a³ + b³ + c³ - 3abc = ( a + b + c ) ( a² + b² + c² - ( ab + bc + ca ). = ( 15 ) ( 83 - ( 71 ) ). = 15 × 12. = 180
please mark as brainleast
Given :
• a + b + c = 15
• a² + b² + c² = 83
To Find :
• a³ + b³ + c³ - 3abc
Solution :
We know that,
★ a³ + b³ + c³ - 3abc = (a + b + c) (a² + b² + c² - ab - bc - ca)
→ a³ + b³ + c³ - 3abc = (a + b + c) {(a² + b² + c²) - ab + bc + ca)} ... i)
From the above identity, we're required to find the values of a + b + c, a² + b² + c² and ab + bc + ca to get the value of a³ + b³ + c³ - 3abc
Now,
★ (a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
→ 15² = 83 + 2(ab + bc + ca)
→ 225 = 83 + 2(ab + bc + ca)
→ 225 - 83 = 2(ab + bc + ca)
→ 142 = 2(ab + bc + ca)
→ ab + bc + ca = 71
Put the value of ab + bc + ca in eq i)
★ a³ + b³ + c³ - 3abc = (a + b + c) {(a² + b² + c²) - ab + bc + ca)}
→ a³ + b³ + c³ - 3abc = 15 × (83 - 71)
→ a³ + b³ + c³ - 3abc = 15 × 12
→ a³ + b³ + c³ - 3abc = 180
The value of a³ + b³ + c³ - 3abc is 180.