Math, asked by krishnanrnair7048, 11 months ago

If a+b+c=15 and ab+bc+ca=71. Find value of a2+b2+c2

Answers

Answered by a321038
39

Answer:

taking a2+b2+c2 as x

 ({a + b + c})^{2}  =  {a}^{2}  +  {b}^{2}  +  {c}^{2}   \\ + 2(ab + bc + ca) \\ 225 =  {x} + 142 \\ x = 83

PLEASE MARK AS BRAINLIEST

Answered by Anonymous
16

hay!!

question

if \: a + b + c = 15 \: and \: ab + bc + ca = 71 \: then \: find \: the \: value \: of \: a {}^{2} b {}^{2} c {}^{2}

given

a + b + c = 15

ab + bc + ca = 71

to find

a {}^{2}+ b {}^{2}+ c {}^{2}

answer

083

formulas used

a {}^{2}+ b {}^{2} +c {}^{2}=a {}^{2}+ b {}^{2} +c {}^{2}+2(ab+bc+ca)

{\sf{\red{\underline{\Large{Explanation}}}}}

formula

=>(a+b+c)²=a²+b²+c²+2(ab + bc + ac)

putting the values

=>(a+b+c)²=a²+b²+c²+2(ab + bc + ac)

=>(15)²=a²+b²+c²+2(71)

=>225 =a²+b²+c²+142

=>225-142=a²+b²+c²

=>083. answer.

hope it's helps you

Similar questions