If a+b+c=15 find the value of (5-a)^3 + (5-b)^3 (5-c)^3 - 3(5-a)(5-b)(5-c)
Answers
Answered by
2
Step-by-step explanation:
let a =5-a,
b =5-b
c= 5-c
now,
(5-a)^3+(5-b)^3+(5-c)^3-3(5-a)(5-b)(5-c)
we can write that,
a^3+b^3+c^3-3abc
=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)
now,put the values of a,b and c,
=[(5-a)+(5-b)+(5-c)][(5-a)^2+(5-b)^2+(5-c)^2-(5-a)(5-b)-(5-b)(5-c)-(5-a)(5-c)]
=[15-(a+b+c)][(5-a)^2+(5-b)^2+(5-c)^2-(5-a)(5-b)-(5-b)(5-c)-(5-a)(5-c)]
now,put the values of a+b+c =15,
=[15-15][(5-a)^2+(5-b)^2+(5-c)^2-(5-a)(5-b)-(5-b)(5-c)-(5-a)(5-c)]
=[0][(5-a)^2+(5-b)^2+(5-c)^2-(5-a)(5-b)-(5-b)(5-c)-(5-a)(5-c)]
=0
therefore, the value of (5-a)^3+(5-b)^3+(5-c)^3-3(5-a)(5-b)(5-c) is 0
Similar questions