Math, asked by aayushishirole, 11 months ago

If a+b+c=16 and a^2+b^2+c^2=90 then find the value of a^3+b^3+c^3-3abc​

Answers

Answered by TrickYwriTer
7

Step-by-step explanation:

Given -

  • a + b + c = 16
  • a² + b² + c² = 90

To Find -

  • Value of + + - 3abc

As we know that :-

  • (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca

→ (16)² = 90 + 2ab + 2bc + 2ca

→ 256 - 90 = 2(ab + bc + ca)

→ 166 = 2(ab + bc + ca)

→ 83 = ab + bc + ca

→ 83 = -1(-ab - bc - ca)

→ -83 = -ab - bc - ca

Now,

  • a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² - ab - bc - ca)

→ (16)(90 - 83)

→ 16 × 7

→ 112

Hence,

The value of + + - 3abc is 112

Answered by silentlover45
0

\large{\boxed{\underline{\underline{\bf{\red{Answer:-}}}}}}

\implies 112

\large\underline\mathrm{hence,}

\large\underline\mathrm{The \: value \: of \: a² \: + \: b² \: + \: c² \: -3abc \: is \: 112 \: .}

\large\underline\mathrm{Given:-}

  • a + b + c = 16
  • a² + b² + c² = 90

\large\underline\mathrm{To \: find}

  • value of a² + b² + c² -3abc

\large\underline\mathrm{So,}

\implies (a + b + c)² = a² + b² + c² + 3ab + 2bc + 2ca

\implies (16)² = 90 + 2ab + 2bc + 2ca

\implies 256 - 90 = 2(ab + bc + ca)

\implies 166 = 2(ab + bc + ca)

\implies 83 = (ab + bc + ca)

\implies 83 = -1(-ab - bc - ca)

\implies -83 = -ab - bc - ca

\large\underline\mathrm{Then,}

\implies a² + b² + c² -3abc = (a + b + c)(a² + b² + c² - ab - BC - ca)

\implies (16)(90 - 83)

\implies (16)(7)

\implies 112

\large\underline\mathrm{hence,}

\large\underline\mathrm{The \: value \: of \: a² \: + \: b² \: + \: c² \: -3abc \: is \: 112 \: .}

\large\underline\mathrm{Hope \: it \: helps \: you \: plz \: mark \: me \: brainlist}

Similar questions