If a+b+c=16 and a^2+b^2+c^2=90 then find the value of a^3+b^3+c^3-3abc
Answers
Answered by
7
Step-by-step explanation:
Given -
- a + b + c = 16
- a² + b² + c² = 90
To Find -
- Value of a³ + b³ + c³ - 3abc
As we know that :-
- (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca
→ (16)² = 90 + 2ab + 2bc + 2ca
→ 256 - 90 = 2(ab + bc + ca)
→ 166 = 2(ab + bc + ca)
→ 83 = ab + bc + ca
→ 83 = -1(-ab - bc - ca)
→ -83 = -ab - bc - ca
Now,
- a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² - ab - bc - ca)
→ (16)(90 - 83)
→ 16 × 7
→ 112
Hence,
The value of a³ + b³ + c³ - 3abc is 112
Answered by
0
112
- a + b + c = 16
- a² + b² + c² = 90
- value of a² + b² + c² -3abc
(a + b + c)² = a² + b² + c² + 3ab + 2bc + 2ca
(16)² = 90 + 2ab + 2bc + 2ca
256 - 90 = 2(ab + bc + ca)
166 = 2(ab + bc + ca)
83 = (ab + bc + ca)
83 = -1(-ab - bc - ca)
-83 = -ab - bc - ca
a² + b² + c² -3abc = (a + b + c)(a² + b² + c² - ab - BC - ca)
(16)(90 - 83)
(16)(7)
112
Similar questions