If A+B+C=180 prove that sin2A +sin2B-sin2C = 4cosA cosB cosC
Answers
Answered by
65
hope it helps you.....
Attachments:
Answered by
87
Given:
A+B+C = 180°
=> A+B = 180° - C
=> sin(A+B) = sin(180-C)
= sinC -----(1)
______________________
We know that,
i))SinC - SinD = 2cos[(C+D)/2]sin[(C-D)/2]
ii) SinC + sinD = 2sin[(C+D)/2]cos[(C+D)/2]
iii) Sin2B = 2sinBcosB
_______________________
Here,
LHS = sin2A+sin2B-sin2C
= sin2A-sin2C+sin2B
=2cos[(2A+2C)/2]sin[(2A-2C)/2]+sin2B
= 2cos(A+C)sin(A-C)+2sinBcosB
= -2cosBsin(A-C)+2sinBcosB
= (2cosB)[-sin(A-C)-sinB]
= 2cosB[-sin(A-C)+sin(A+C)]
= 2cosB[sin(A+C)-sin(A-C)]
= 2cosB{2cos[(A+C+A-C)/2]sin[(A+C-A+C)/2]}
= 4cosBcosAsinC
= 4cosAcosBsinC
= RHS
••••
Similar questions