If A+B+C = 180°, prove that: tan(A+B-C) + tan(B+C-A) + tan(C+A-B) = tan2A tan2b tan2C
Answers
Answered by
0
Given that
A+B+C=180∘A+B+C=180∘
taking tan (tangent) on both the sides,
tan(A+B+C)=tan(180∘)tan(A+B+C)=tan(180∘)
tanA+tanB+tanC−tanAtanBtanC1−tanAtanB−tanBtanC−tanAtanC=0tanA+tanB+tanC−tanAtanBtanC1−tanAtanB−tanBtanC−tanAtanC=0
tanA+tanB+tanC−tanAtanBtanC=0tanA+tanB+tanC−tanAtanBtanC=0
tanA+tanB+tanC=tanAtanBtanCtanA+tanB+tanC=tanAtanBtanC
tanA+tanB+tanCtanAtanBtanC=1tanA+tanB+tanCtanAtanBtanC=1
Similar questions