If A + B + C =180º, prove that cos2A + cos2B + cos2C = -1 - 4cos A cosB cosC
Answers
Answered by
3
Answer:
Step-by-step explanation:
A+B+C = 180°
=> A+B = 180 - C
=>Cos(A+B) = Cos(180 - C) = - CosC
Cos2A + Cos2B + Cos2C
//We know that CosA + CosB = 2Cos(A+B/2)Cos(A-B/2)
= 2Cos(2A+2B/2)Cos(2A-2B/2) + Cos2C
= 2Cos(A+B)Cos(A-B) + 2Cos²C - 1
= 2(-CosC)Cos(A-B) + 2Cos²C - 1
= -1 - 2CosC[Cos(A-B) - CosC]
= -1 - 2CosC[Cos(A-B) + Cos(A+B)]
//We know that CosA + CosB = 2Cos(A+B/2)Cos(A-B/2)
= -1 -2CosC[2Cos(A-B+A+B/2)Cos(A-B-A-B/2)]
= -1 -2CosC[2Cos(2A/2)Cos(-2B/2)]
= -1 -4CosCCosACosB
= R.H.S
Hence Proved. =
Similar questions