if a+b+c=2, 1/a+1/b+1/c=0, ac= 4/5 and a^3+ b^3+ c^3=28 find the value of a^2+ b^ 2+c^2
Answers
Answered by
0
Step-by-step explanation:
(a+b+c)=10;a
2
+b
2
+c
2
=38 & a
3
+b
3
+c
3
=160
(a+b+c)
2
=a
2
+b
2
+c
2
+2(ab+bc+ac)⇒
2
100−38
=ab+bc+ca
⇒ab+bc+ca=31
As a
3
+b
3
+c
3
−3abc=(a+b+c)[a
2
+b
2
+c
2
−ab−bc−ca]
160−3abc=10[38−31]
⇒
3
160−70
=abc⇒abc=30
Answered by
44
Answer:
Using formula,
\sfa3+b3+c3−3abc=(35−23)×9=9×12=108[/tex]
Similar questions
Math,
2 months ago
Physics,
2 months ago
CBSE BOARD X,
4 months ago
Chemistry,
10 months ago
English,
10 months ago