If A + B + C = 2π, then prove that sin A - sin B + sin C - sin D = -4 .
Answers
Answered by
14
Solution :
i ) A+B+C+D = 2π
=> A/2 + B/2 + C/2 + D/2 = π
=> ( A+B)/2 = π - (C+D)/2
Now ,
LHS = sinA-sinB+sinC-sinD
=2cos[(A+B)/2]sin[(A-B)/2]
+ 2cos[(C+D)/2]sin[(C-D)/2]
= 2cos[(C+D)/2]sin[(A-B)/2]
+ 2cos{π+(A+B)/2)}sin[(C-D)/2]
= 2cos[(A+B)/2]sin[(A-B)/2]
- 2cos[(A+B)/2]sin[(C-D)/2]
= 2cos[(A+B)/2]{sin[(A-B)/2]-sin[(C-D)/2]}
= 2cos[(A+B)/2]{2cos[(A+B+C-D)/4}×
sin{(A-B-C+D)/4}
= 4cos[(A+B)/2]cos{(A+B-2π+A+C)/4}×
sin[(A+D-2π+A+D)/4}
= 4cos[(A+B)/2]cos[(A+C)/2 - π/2]×
sin[(A+D)/2 - π/2]
= -4cos[(A+B)/2]sin[(A+C)/2]cos[(A+D)/2]
= RHS
•••••
i ) A+B+C+D = 2π
=> A/2 + B/2 + C/2 + D/2 = π
=> ( A+B)/2 = π - (C+D)/2
Now ,
LHS = sinA-sinB+sinC-sinD
=2cos[(A+B)/2]sin[(A-B)/2]
+ 2cos[(C+D)/2]sin[(C-D)/2]
= 2cos[(C+D)/2]sin[(A-B)/2]
+ 2cos{π+(A+B)/2)}sin[(C-D)/2]
= 2cos[(A+B)/2]sin[(A-B)/2]
- 2cos[(A+B)/2]sin[(C-D)/2]
= 2cos[(A+B)/2]{sin[(A-B)/2]-sin[(C-D)/2]}
= 2cos[(A+B)/2]{2cos[(A+B+C-D)/4}×
sin{(A-B-C+D)/4}
= 4cos[(A+B)/2]cos{(A+B-2π+A+C)/4}×
sin[(A+D-2π+A+D)/4}
= 4cos[(A+B)/2]cos[(A+C)/2 - π/2]×
sin[(A+D)/2 - π/2]
= -4cos[(A+B)/2]sin[(A+C)/2]cos[(A+D)/2]
= RHS
•••••
Answered by
0
Answer:
hey are you writing exam
Similar questions