If A + B + C = 0, then prove that sin A + sin B - sin C = - 4
.
Answers
Answered by
12
Hey there! Thanks for the question!
Given,
A + B + C = 0
A + B = - C
Then,
sinA + sinB - sinC
= 2 sin(A+B/2) cos( A - B/2) - sinC
= 2 sin( - C /2) cos( A - B/2) - sinC
= -2 sinC/2 cos(A-B) /2 - 2sinC/2cosC/2
= -2sinC/2 [ cos(A-B) /2 + cos -(A+B)/2 ]
= -2sinC/2 [ 2cos(A/2)*cos(B/2)]
= -4sinA/2*sinB/2*sinC/2
Hence proved.
We used,
sin2A = 2sinA*cosA
sin(-x) = - sinx
sinA + sinB = Sin(A+B/2) * cos(A-B/2)
cos(A-B)+ cos(A+B) = 2cosAcosB.
___________________________
Latex version of the proof :
Given,
A + B + C = 0
A + B = - C
Then,
sinA + sinB - sinC
= 2 sin(A+B/2) cos( A - B/2) - sinC
= 2 sin( - C /2) cos( A - B/2) - sinC
= -2 sinC/2 cos(A-B) /2 - 2sinC/2cosC/2
= -2sinC/2 [ cos(A-B) /2 + cos -(A+B)/2 ]
= -2sinC/2 [ 2cos(A/2)*cos(B/2)]
= -4sinA/2*sinB/2*sinC/2
Hence proved.
We used,
sin2A = 2sinA*cosA
sin(-x) = - sinx
sinA + sinB = Sin(A+B/2) * cos(A-B/2)
cos(A-B)+ cos(A+B) = 2cosAcosB.
___________________________
Latex version of the proof :
Answered by
0
Step-by-step explanation:
its correct thanks for login into brainly.in
Attachments:

Similar questions