If A + B + C = 2S, then prove that cos(S -A) + cos(S - B) + cos C = -1 + 4
Answers
Answered by
3
Solution :
A + B + C = 2s -----( 1 )
LHS = cos(s-A)+cos(s-B)+cos(s-C)
=2cos[(2s-A-B)/2]cos[(B-A)/2] +cosC
= 2cos(C/2)cos[(B-A)/2]+2cos²(C/2)-1
= -1+2cos(C/2)[cos[(B-A)/2]+cos(C/2)
= -1+2cos(C/2){2cos[(B-A+C)/4] ×
cos[(B-A-C)/4]}
= -1+4cos(C/2)cos[(B+C-A)/4]×
cos[(A+C-B)/4]
= -1 + 4cos(C/2)cos[(2s-A-A)/4]×
cos[(2s-B-B)/4]
= -1 +4cos(C/2)cos[(S-A)/2]cos[(s-B)/2]
= -1+4cos[(s-A)/2]cos[(s-B)/2]cos[(s-C)/2]×
cos(C/2)
= RHS
••••
A + B + C = 2s -----( 1 )
LHS = cos(s-A)+cos(s-B)+cos(s-C)
=2cos[(2s-A-B)/2]cos[(B-A)/2] +cosC
= 2cos(C/2)cos[(B-A)/2]+2cos²(C/2)-1
= -1+2cos(C/2)[cos[(B-A)/2]+cos(C/2)
= -1+2cos(C/2){2cos[(B-A+C)/4] ×
cos[(B-A-C)/4]}
= -1+4cos(C/2)cos[(B+C-A)/4]×
cos[(A+C-B)/4]
= -1 + 4cos(C/2)cos[(2s-A-A)/4]×
cos[(2s-B-B)/4]
= -1 +4cos(C/2)cos[(S-A)/2]cos[(s-B)/2]
= -1+4cos[(s-A)/2]cos[(s-B)/2]cos[(s-C)/2]×
cos(C/2)
= RHS
••••
Similar questions