Math, asked by PragyaTbia, 1 year ago

If A + B + C = 2S, then prove that sin(S -A) + sin(S - B) + sin C = 4 cos\frac{S - A}{2}cos\frac{S - B}{2}sin\frac{C}{2}

Answers

Answered by mysticd
28
Solution :

A + B + C = 2s -----( 1 )



LHS = sin(s-A) + sin(s-B) + sinC

= 2cos[( 2s-A-B)/2]cos[(B-A)/2] + sinC

= 2sin(C/2)cos[(A-B)/2]+2sin(C/2)cos(C/2)

= 2sin(C/2){cos[(A-B)/2] + cos(C/2)}

= 2sin(C/2){2[(A-B+C)/4]×cos[(A-B-C)/4]}

=4sin(C/2){cos[(2s-B-B)/4]cos[(2s-A-A)/4]}

= 4cos[(s-A)/2]cos[(s-B)/2]sin(C/2)

= RHS

••••
Answered by vishwak65
6

Answer:

Hope this helps you mark me as the brainliest

Attachments:
Similar questions