If A + B + C = 2S, then prove that sin(S -A) + sin(S - B) + sin C = 4
Answers
Answered by
28
Solution :
A + B + C = 2s -----( 1 )
LHS = sin(s-A) + sin(s-B) + sinC
= 2cos[( 2s-A-B)/2]cos[(B-A)/2] + sinC
= 2sin(C/2)cos[(A-B)/2]+2sin(C/2)cos(C/2)
= 2sin(C/2){cos[(A-B)/2] + cos(C/2)}
= 2sin(C/2){2[(A-B+C)/4]×cos[(A-B-C)/4]}
=4sin(C/2){cos[(2s-B-B)/4]cos[(2s-A-A)/4]}
= 4cos[(s-A)/2]cos[(s-B)/2]sin(C/2)
= RHS
••••
A + B + C = 2s -----( 1 )
LHS = sin(s-A) + sin(s-B) + sinC
= 2cos[( 2s-A-B)/2]cos[(B-A)/2] + sinC
= 2sin(C/2)cos[(A-B)/2]+2sin(C/2)cos(C/2)
= 2sin(C/2){cos[(A-B)/2] + cos(C/2)}
= 2sin(C/2){2[(A-B+C)/4]×cos[(A-B-C)/4]}
=4sin(C/2){cos[(2s-B-B)/4]cos[(2s-A-A)/4]}
= 4cos[(s-A)/2]cos[(s-B)/2]sin(C/2)
= RHS
••••
Answered by
6
Answer:
Hope this helps you mark me as the brainliest
Attachments:
Similar questions
Math,
7 months ago
Political Science,
1 year ago
Chemistry,
1 year ago
Physics,
1 year ago
Social Sciences,
1 year ago