Math, asked by Dharanibojja11, 13 hours ago

if a+b+c=3π/2,then prove that 1)cos^2a+cos^2b-cos^2c=-2cosAcosBsinC ​

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

A + B + C =  \frac{3\pi}{2}  \\

Now,

  \rm \: \cos ^{2} (A)  +  \cos ^{2} (B)  -  \cos ^{2} (C)

  \rm \: =   \frac{1 + \cos(2A)}{2}  +   \frac{1 + \cos (2B)}{2}  -   \frac{1 + \cos (2C) }{2}  \\

  \rm \: =    \frac{1}{2}  +   \frac{ \cos(2A)}{2}  +  \frac{1}{2}  +   \frac{ \cos (2B)}{2}  - \frac{1}{2}    -  \frac{ \cos (2C) }{2}  \\

  \rm \: =    \frac{1}{2}  +   \frac{ \cos(2A)}{2}  +     \frac{ \cos (2B)}{2}   -  \frac{ \cos (2C) }{2}  \\

  \rm \: =    \frac{1}{2}  +   \frac{1}{2}   \bigg \{\cos(2A)  +     \cos (2B)   -  \cos (2C) \bigg \}  \\

  \rm \: =    \frac{1}{2}  +   \frac{1}{2}   \bigg \{2\cos \bigg( \frac{2A  +   2B}{2} \bigg) \cos \bigg( \frac{2A   -    2B}{2} \bigg)  -  \{1 -  2\sin^{2}  (C) \} \bigg \}  \\

  \rm \: =    \frac{1}{2}  +   \frac{1}{2}   \bigg \{2\cos ( A  +   B ) \cos ( A   -  B)  -  1  +   2\sin^{2}  (C)  \bigg \}  \\

  \rm \: =    \frac{1}{2}  +   \frac{1}{2}   \bigg \{2\cos  \bigg( \frac{3\pi}{2}  - C \bigg) \cos ( A   -  B)    +   2\sin^{2}  (C)  \bigg \} -  \frac{1}{2}   \\

  \rm \: =       \frac{1}{2}   \bigg \{ - 2\sin (  C ) \cos ( A   -  B)    +   2\sin^{2}  (C)  \bigg \}    \\

  \rm \: =       \frac{1}{2}   \bigg \{ 2\sin (  C ) \{ \sin(C)  - \cos ( A   -  B)     \}    \bigg \}    \\

  \rm \: =        \sin (  C )  \bigg\{ \sin \bigg( \frac{3\pi}{2}  - (  A    +   B)\bigg)  - \cos ( A   -  B)      \bigg\}     \\

  \rm \: =        \sin (  C )  \bigg\{  - \cos(  A    +   B) - \cos ( A   -  B)      \bigg\}     \\

  \rm \: =       -   \sin (  C )  \bigg\{ \cos(  A    +   B)  + \cos ( A   -  B)      \bigg\}     \\

  \rm \: =       -   \sin (  C )  \bigg\{ 2\cos(  A )\cos ( B)      \bigg\}     \\

  \rm \: =       -     2\cos(  A )\cos ( B)      \sin (  C )   \\

Similar questions