if a+b+c=3,a^2+b^2+c^2=5and a^3+b^3+c^3=9 find abc
Answers
Answered by
1
Hi ,
It is given that ,
a + b + c = 3 ---- ( 1 )
a² + b² + c² = 5 ---( 2 )
a³ + b³ + c³ = 9 ---( 3 )
Do the square of equation ( 1 ) , we
get
( a + b + c )² = 3²
a² + b² + c² + 2( ab + bc + ca ) = 9
5 + 2( ab + bc + ca ) = 9
2 ( ab + bc + ca ) = 4
ab + bc + ca = 2 ---( 4 )
Now ,
By algebraic identity ,
a³ + b³ + c³ = ( a + b + c ) [ a²+b²+c²-(ab+bc+ca ] + 3abc
9 = 3 [ 5 - 2 ] + 3abc
9 = 3 × 3 + 3abc
9 - 9 = 3abc
0 = 3abc
Therefore ,
abc = 0
I hope this helps you.
: )
It is given that ,
a + b + c = 3 ---- ( 1 )
a² + b² + c² = 5 ---( 2 )
a³ + b³ + c³ = 9 ---( 3 )
Do the square of equation ( 1 ) , we
get
( a + b + c )² = 3²
a² + b² + c² + 2( ab + bc + ca ) = 9
5 + 2( ab + bc + ca ) = 9
2 ( ab + bc + ca ) = 4
ab + bc + ca = 2 ---( 4 )
Now ,
By algebraic identity ,
a³ + b³ + c³ = ( a + b + c ) [ a²+b²+c²-(ab+bc+ca ] + 3abc
9 = 3 [ 5 - 2 ] + 3abc
9 = 3 × 3 + 3abc
9 - 9 = 3abc
0 = 3abc
Therefore ,
abc = 0
I hope this helps you.
: )
Similar questions