Math, asked by noelRohith4182, 1 year ago

If a + b + c = 5 and ab + bc + ca = 10, then prove that a3 + b3 + c3 3abc = 25.

Answers

Answered by sarikareal
1

Answer:

Step-by-step explanation:

Answered by Anonymous
2

✨✨✨✨ANSWER...

FORMULA USED

(a {}^{2}  + b {}^{2}  + c {}^{2} ) = (a + b + c) {}^{2}  - 2(ab + bc + ca) \\ (putting \: the \: values \:  \: we \: get...) \\ (a {}^{2}  + b {}^{2}  + c {}^{2} ) =(5) {}^{2}  - 2(10) \\ (a {}^{2}  + b {}^{2}  + c {}^{2} ) =25 - 20 \\ (a {}^{2}  + b {}^{2}  + c {}^{2} ) =5

now \: .... \\ a {}^{3}  + b {}^{3}  + c {}^{}  - 3abc = (a + b + c)((a {}^{2}  + b {}^{2}  + c {}^{2}  - (ab + bc + ca)) \\ \\ putting \: the \: values \\  \\  a {}^{3}  + b {}^{3}  + c {}^{}  - 3abc = (5)(5  - 10) \\ a {}^{3}  + b {}^{3}  + c {}^{}  - 3abc =  - 25

  • so it has been proved above.............hope this helps you
Similar questions