Math, asked by saniabrainly, 1 year ago

if a+b+c=6,a^2+b^2+c^2=14 and a^3+b^3+c^3=36 then prove that abc =6
only genius can give answer

Answers

Answered by Varun1870
1

(a+b+c)^2=a^2 + b^2 + c^2 + 2(ab+bc+ca)

6^2=14+2(ab+bc+ca)

36-14=2(ab+bc+ca)

22=2(ab+bc+ca)

(ab+bc+ca)=11


a3 + b3 + c3 - 3abc = (a + b + c )(a2 + b2 + c2 -(ab+ac+bc))

36-3abc=6(14-11)

36-18=3abc

3abc=18

abc=6


Hence,proved


saniabrainly: hi
saniabrainly: nyc
Answered by siddhartharao77
0

Given : a + b + c = 6    ------ (1)

Given : a^2 + b^2 + c^2 = 14   -------- (2)

Given : a^3 + b^3 + c^3 = 36   --------- (3)

On squaring Equation (1), we get

⇒ (a + b + c)^2 = (6)^2

⇒ a^2 + b^2 + c^2 + 2ab + 2bc + 2ca = 36

⇒ a^2 + b^2 + c^2 + 2(ab + bc + ca) = 36

⇒ 14 + 2(ab + bc + ca) = 36

⇒ 2(ab + bc + ca) = 36 - 14

⇒ 2(ab + bc + ca) = 22

⇒ ab + bc + ca = 11.


Now,

We know that a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca)

⇒ 36 - 3abc = (6)(14 - 11)

⇒ 36 - 3abc = (6)(3)

⇒ 36 - 3abc = 18

⇒ -3abc = 18 - 36

⇒ -3abc = -18

⇒ abc = 6.


Hope this helps!


siddhartharao77: :-)
saniabrainly: i marked u as brainlist
siddhartharao77: Thank u
saniabrainly: hmmmm
Similar questions