Math, asked by ashwith12, 9 months ago

If a+b+c=6, a2+b2+c2=34 , then ab+bc+ca=​

Answers

Answered by kavididevishivani
2

Answer:

ab+bc+ca=1

Step-by-step explanation:

(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ca

(6)^2=34+2 (ab+bc+ca)

36=34+2 (ab+bc+ca)

36=36 (ab+bc+ca)

36/36=ab+bc+ca

1/1=ab+bc+ca

Answered by kartik2507
8

Answer:

ab+bc+ca = 1

Step-by-step explanation:

using the identity

 {(a + b + c)}^{2}  =  {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2ab + 2bc + 2ca \\  \\  {6}^{2} = 34 + 2ab + 2bc + 2ca \\ 36 = 34 + 2(ab + bc + ca) \\ 36 - 34  = 2(ab + bc + ca) \\ 2 = 2(ab + bc + ca) \\ ab + bc + ca =  \frac{2}{2}  \\ ab + bc + ca = 1

hope you get your answer

Similar questions