If a+b+c=6, abc=6, ab+bc+ac=11, find a^3 + b^3 + c^3
Answers
Answered by
1
Answer:
a³+b³+c³=36
Step-by-step explanation:
Given:-
a+b+c=6,abc=6,ab+bc+ca=11
To Find:-
a³+b³+c³
Formulas Applied:-
- (a+b+c)²=a²+b²+c²+2(ab+bc+ca)
- a³+b³+c³-3abc=(a+b+c)[a²+b²+c²-(ab+bc+ca)]
Solution:-
(a+b+c)²=a²+b²+c²+2(ab+bc+ca)
(6)²=a²+b²+c²+2(11)
a²+b²+c²=36-22
a²+b²+c²=14
a³+b³+c³-3abc=(a+b+c)[a²+b²+c²-(ab+bc+ca)]
a³+b³+c³=(a+b+c)[(a²+b²+c²)-(ab+bc+ca)]+3abc
a³+b³+c³=(6)[(14)-11]+3(6)
a³+b³+c³=(6)(3)+18
a³+b³+c³=18+18
a³+b³+c³=36
Answered by
4
Answer:
a³+b³+c³=36
Step-by-step explanation:
Given:-
a+b+c=6,abc=6,ab+bc+ca=11
To Find:-
a³+b³+c³
Formulas Applied:-
(a+b+c)²=a²+b²+c²+2(ab+bc+ca)
a³+b³+c³-3abc=(a+b+c)[a²+b²+c²-(ab+bc+ca)]
Solution:-
(a+b+c)²=a²+b²+c²+2(ab+bc+ca)
(6)²=a²+b²+c²+2(11)
a²+b²+c²=36-22
a²+b²+c²=14
a³+b³+c³-3abc=(a+b+c)[a²+b²+c²-(ab+bc+ca)]
a³+b³+c³=(a+b+c)[(a²+b²+c²)-(ab+bc+ca)]+3abc
a³+b³+c³=(6)[(14)-11]+3(6)
a³+b³+c³=(6)(3)+18
a³+b³+c³=18+18
a³+b³+c³=36h
Similar questions