If a+b+c=6 and a2+b2+c2=14 and a3+b3+c3=36 find value of abc
Answers
Answered by
41
Answer-
(a+b+c)^2=a2+b2+c2+2(ab+bc+ca)
(6)2=14+2(ab+bc+ca)
36-14=2(ab+bc+ca)
22/2=ab+bc+ca
ab+bc+ca=11
a^3+b^3+c^3-3abc
=(a+b+c)(a2+b2+c2-ab-bc-ca)
=(6)(14-11)
=(6)(3)
=18
Since, a^3+b^3+c^3-3abc=18
36-3abc=18
-3abc=18-36
-3abc=-18
abc=6
Hope it helps
(a+b+c)^2=a2+b2+c2+2(ab+bc+ca)
(6)2=14+2(ab+bc+ca)
36-14=2(ab+bc+ca)
22/2=ab+bc+ca
ab+bc+ca=11
a^3+b^3+c^3-3abc
=(a+b+c)(a2+b2+c2-ab-bc-ca)
=(6)(14-11)
=(6)(3)
=18
Since, a^3+b^3+c^3-3abc=18
36-3abc=18
-3abc=18-36
-3abc=-18
abc=6
Hope it helps
Answered by
13
Given : a+b+c=6 , a² + b² + c² = 14 , a³ + b³ + c³ = 36
To find : Value of abc
Solution:
a+b+c=6
Squaring both sides
=> a² + b² + c² + 2(ab + bc + ac) = 36
=> 14 + 2(ab + bc + ac) = 36
=> 2(ab + bc + ac) = 22
=> ab + bc + ac = 11
a³ + b³ + c³ – 3abc = (a + b + c) (a² + b² + c² – ab – bc – ca)
=> 36 - 3abc = 6 ( 14 - 11)
=> 36 - 3abc = 18
=> 3abc = 18
=> abc = 6
Additional info
a , b & c = 1 , 2 & 3 ( can be one of the solution)
Learn more:
a³ + b³ + c³ -3abc = ( a + b + c)(a² + b² + c² - ab - bc - ca) .
https://brainly.in/question/1195178
Similar questions