If a+b+c=6 and ab+bc+ac=11, find the value of a3+b3+c3
-3abc.
Answers
Answered by
18
Hello friend
We have an algebraic identity
(a+b+c)²=a²+b²+c²+2ab+2bc+2ca
(a+b+c)²=a²+b²+c²+2(ab+bc+ca)
It is given that a+b+c=6 and ab+bc+ac=11
6²=a²+b²+c²+2(11)
36-22=a²+b²+c²
So a²+b²+c²=14
____________________________
a³+b³+c³-3abc= (a+b+c)(a²+b²+c²-ab-bc-ca)
a³+b³+c³-3abc= (a+b+c)(a²+b²+c²-(ab+bc+ca))
a³+b³+c³-3abc=6×(14-11)
=6×3
=18
Hope it helps!
We have an algebraic identity
(a+b+c)²=a²+b²+c²+2ab+2bc+2ca
(a+b+c)²=a²+b²+c²+2(ab+bc+ca)
It is given that a+b+c=6 and ab+bc+ac=11
6²=a²+b²+c²+2(11)
36-22=a²+b²+c²
So a²+b²+c²=14
____________________________
a³+b³+c³-3abc= (a+b+c)(a²+b²+c²-ab-bc-ca)
a³+b³+c³-3abc= (a+b+c)(a²+b²+c²-(ab+bc+ca))
a³+b³+c³-3abc=6×(14-11)
=6×3
=18
Hope it helps!
0007jamesbond:
thanks
Similar questions