if a+b+c = 6 and ab+bc+ac = 8 find a^3 +b^3+c^3-3abc
Answers
Answered by
0
Answer:
a3+b3+c3-3abc=a2+b2+c2-ab-bc-ca
=a2+b2+c2-(ab+bc+ca)
=a2+b2+c2-(8)
=(a+b+c)2-8
=(6)2-8
=12-8
=4
Answered by
0
Answer:
(a+b+c)(a^2+b^2+c^2-ab-bc-ca)
Step-by-step explanation:
so
(a+b+c)^2=a^2+b^2+c^2+ab+bc+ca
a^2+b^2+c^2=6^2-8=28
then
result is
6×(28-8)=120
Similar questions