Math, asked by sakethannavarapu, 4 months ago

If a : b:c = 7:8:9, find cos A : cos B : cos C.​

Answers

Answered by vinaykumarlko321
0

Sorry I am in class 9

sorry

Answered by Sanskruti8787
1

Answer:

HOPE IT HELPS YOU

Step-by-step explanation:

Given

a : b : c = 7 : 8 : 9

sinA : sinB : sinC = 7 : 8 : 9 ( sine Rule)

sin ^2 A : sin ^2 B : sin ^2 C = 49 : 64 :81

( 1 - ( cos A) ^2 ) : ( 1 - ( cos B) ^2 ) : ( 1 - ( cos C) ^2 ) = 49 : 64 : 81

- ( cos A) ^2 ) : - ( cos B) ^2 : - ( cos C) ^2 = 48 : 63 : 80

( cos A) ^2 : ( cos B) ^2 : ( cos C) ^2 = 48 : 63 : 80

cos A : cos B : cos C = √48 : √63 : √80

cos A : cos B : cos C = √16* 3 : √7 * 9 : √16 * 5

cos A : cos B : cos C = 4√3 : 3√7 : 4√5.

Solution : cos A : cos B : cos C = 4√3 : 3√7 : 4√5.

PLS MARK ME AS BRAINLIEST

&

PLS FOLLOW ME

Similar questions