If a+b+c=7 andab+bc+ac= 20 find the value of a^2+b^2+c^2
Answers
Answered by
1
Answer:
9
Step-by-step explanation:
We know,
( a + b + c )^2 = a^2 + b^2 + c^2 + 2( ab + bc + ca )
Here,
Squaring on both sides of a + b + c = 7 :
⇒ ( a + b + c )^2 = 7^2
⇒ a^2 + b^2 + c^2 + 2( ab + bc + ca ) = 49
Substituting the given values:
⇒ a^2 + b^2 + c^2 + 2( 20 ) = 49
⇒ a^2 + b^2 + c^2 + 40 = 49
⇒ a^2 + b^2 + c^2 = 49 - 40 = 9
Hence the require value of a^2 + b^2 + c^2 is 9
Answered by
0
Answer:
9
Step-by-step explanation:
(a+ b+ c)^2 = a2 + b2 + c2 + 2ab + 2bc + 2bc
7^2 = a2 + b2 + c2 + 2 ( ab + bc + ca )
49 = a2 + b2 + c2 + 2× 20
49 = a2+ b2 + c2 + 40
therefore, a2 + b2 + c2 = 49 - 40 = 9
please mark it the brainliest answer
Similar questions
Hindi,
4 months ago
Computer Science,
4 months ago
English,
4 months ago
Math,
9 months ago
English,
1 year ago