If (a+b+c)=8 and ab +bc+ca =19.Find a^2 +b^2+c^2
Answers
Answered by
1
26 is the answer by squaring a+b+c = 8 on both sides and putting value of ab+ bc+ ca
Answered by
2
given
a+b+c=8
ab +bc +ca= 19
a^2+b^2+c^2=?
(a +b+ c )^2=a^2+b^2+c^2+2(ab+ bc +ca)
8^2=a^2+ b^2+b ^2+2(19)
64= a^2+ b^2+ c^2+38
a^2+b^2+c^2=64-38
a^2+ b^2+ c^2= 26 ans
a+b+c=8
ab +bc +ca= 19
a^2+b^2+c^2=?
(a +b+ c )^2=a^2+b^2+c^2+2(ab+ bc +ca)
8^2=a^2+ b^2+b ^2+2(19)
64= a^2+ b^2+ c^2+38
a^2+b^2+c^2=64-38
a^2+ b^2+ c^2= 26 ans
Similar questions