if a+b+c=8 and ab+bc+ca=20 then find the value of a^3+b^3+c^3-3abc
Answers
Answered by
4
Answer:
32
Step-by-step explanation:
a+b+c=8
ab+bc+ca=20
(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ca
(8)^2=a^2+b^2+c^2+2(ab+bc+ca)
64=a^2+b^2+c^2+2(20)
64=a^2+b^2+c^2+40
a^2+b^2+c^2=64-40
a^2+b^2+c^2=24
Now,a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)
=(8)(24-20)
=8×4
=32
Similar questions