if a+b+c=9 and a^2+b^2+c^2=35 find the value of a^3+b^3+c^3-3abc
please answer my question as soon as possible.
Answers
Answered by
2
Answer: a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ac).
putting the given values
9(35-(ab+BC+Ac)...........(1)
Value of ab+BC+ac
(A+b+c)^2=a^2+b^2+c^2+2(ab+BC+ac)
Putting the value
9^2={35+2(ab+BC+ac)}
81-35=2(ab+BC+ac)
46/2=ab+BC+ac
23=ab+BC+ac..........(2)
From eq.1and2
9(35-23)=12×9=108 answer
Similar questions