Math, asked by directioner1814, 1 year ago

if a+b+c=9 and a^2+b^2+c^2=35 find the value of a^3+b^3+c^3-3abc




please answer my question as soon as possible.​

Answers

Answered by Vineshsingh
2

Answer: a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ac).

putting the given values

9(35-(ab+BC+Ac)...........(1)

Value of ab+BC+ac

(A+b+c)^2=a^2+b^2+c^2+2(ab+BC+ac)

Putting the value

9^2={35+2(ab+BC+ac)}

81-35=2(ab+BC+ac)

46/2=ab+BC+ac

23=ab+BC+ac..........(2)

From eq.1and2

9(35-23)=12×9=108 answer

Similar questions