Math, asked by shwetakhanna01, 10 months ago

If a + b + c = 9 and ab + bc + ac = 40, then find the value for : a^2 + b^2 + c^2

Answers

Answered by Anonymous
30

\large\bf\underline \blue {To \:  \mathscr{f}ind:-}

  • we need to find the value of a² + b² + c²

 \huge\bf\underline \purple{ \mathcal{S}olution:-}

 \bf\underline{\red{Given:-}}

  • a + b + c = 9
  • ab + bc + ac = 40

we know that,

(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca

↛ a² + b² + c² = (a + b + c)² - 2(ab + bc + ca)

  • putting values of (a + b + c) and (ab + bc + ca)

↛ a² + b² + c² = 9² - 2(40)

↛ a² + b² + c² = 81 - 80

↛ a² + b² + c² = 1

hence,

  • Value of a² + b² + c² is 1

━━━━━━━━━━━━━━━━━━━━━━━━━

Some Identities :-

» (a + b)² = a² + b² + 2ab

» (a - b)² = a² + b² - 2ab

» (a + b)(a - b) = a² - b²

» (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ac

» a³ + b³ = (a + b)(a² + b² - ab)

» a³ - b³ = (a - b)(a² + b² + ab)

━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by Anonymous
2

Answer:

PLEASE MARK ME AS BRAINLIST

Step-by-step explanation:

Attachments:
Similar questions