If a + b + c = 9 and ab + bc + ac = 40, then find the value for : a^2 + b^2 + c^2
Answers
Answered by
30
- we need to find the value of a² + b² + c²
- a + b + c = 9
- ab + bc + ac = 40
we know that,
(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca
↛ a² + b² + c² = (a + b + c)² - 2(ab + bc + ca)
- putting values of (a + b + c) and (ab + bc + ca)
↛ a² + b² + c² = 9² - 2(40)
↛ a² + b² + c² = 81 - 80
↛ a² + b² + c² = 1
hence,
- Value of a² + b² + c² is 1
━━━━━━━━━━━━━━━━━━━━━━━━━
✫Some Identities :-
» (a + b)² = a² + b² + 2ab
» (a - b)² = a² + b² - 2ab
» (a + b)(a - b) = a² - b²
» (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ac
» a³ + b³ = (a + b)(a² + b² - ab)
» a³ - b³ = (a - b)(a² + b² + ab)
━━━━━━━━━━━━━━━━━━━━━━━━━
Answered by
2
Answer:
PLEASE MARK ME AS BRAINLIST
Step-by-step explanation:
Attachments:
Similar questions