If a + b + c = 9 and ab + bc + ac = 40, then find the value for : a^2 + b^2 + c^2
Answers
Answer:
1
Step-by-step explanation:
(a+b+c)² = a²+b²+c²+2ab+2bc+2ca
9² = a²+b²+c²+2(ab+bc+ca)
81 = a²+b²+c²+2×40
a²+b²+c² = 81-80
= 1
Given :-
• a + b + c = 9
•ab + bc + ac = 40
To Find :-
• value of a² + b² + c²
Formula to be used :-
• (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca
Solution :-
We know,
(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca
⟼ (a² + b² + c²) = (a + b + c)² - 2(ab + bc + ca)
Now, put the given values in the formula to get the value of a² + b² + c².
⟼a² + b² + c² = 9² - 2(40)
⟼ a² + b² + c² = 81 - 80
⟼ a² + b² + c² = 1
Hence,
Extra Information :-
•Some identities :-
1. (a + b)² = a² + 2ab + b²
2. (a – b)² = a² – 2ab + b²
3. (x + a)(x + b) = x² + (a + b)x + ab
4. (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca
5. a³ – b³ = (a – b)(a² + ab + b²)
6. (a + b)³ = a³ + 3a²b + 3ab² + b³
7. (a – b)³ = a³ – 3a²b + 3ab² – b³
8.a³ + b³ = (a + b)(a² – ab + b²)