if a+b+c=9 and ab+bc+ca=23 find a^3+b^3+c^3
Answers
Answered by
3
ANSWER:
- Value of a³+b³+c³ = 108.
GIVEN:
- a+b+c = 9
- ab+bc+ca = 23 .....(i)
TO FIND:
- Value of a³+b³+c³
SOLUTION;
=> a+b+c = 9
Squaring both sides we get:
=> (a+b+c)² = (9)²
=> a²+b²+c²+2(ab+bc+ca) = 81
=> a²+b²+c²+2(23) = 81. [From ..(i)]
=> a²+b²+c² = 81-46
=> a²+b²+c² = 35
Now formula:
- a³+b³+c³ = (a+b+c)[a²+b²+c²-(ab+bc+ca)]
Putting the values in the formula:
=> a³+b³+c³ = 9(35-23)
=> a³+b³+c³ = 9(12)
=> a³+b³+c³ = 108.
Value of a³+b³+c³ = 108.
NOTE:
Some important formulas:
(a+b)² = a²+b²+2ab
(a-b)² = a²+b²-2ab
(a+b)(a-b) = a²-b²
(a+b)³ = a³+b³+3ab(a+b)
(a-b)³ = a³-b³-3ab(a-b)
a³+b³ = (a+b)(a²+b²-ab)
a³-b³ = (a-b)(a²+b²+ab)
(a+b)² = (a-b)²+4ab
(a-b)² = (a+b)²-4ab
Similar questions