if a+b+C=9 and ab+BC+CA=23 then a3+b3+c3-3abc =
Answers
Answer:
if a+b+c = 9 and ab+bc+ca = 23 then a cube + b cube + c cube- 3abc=
Asked by RUDRA YADAV | 15th Sep, 2013, 08:33: PM
Expert Answer:
a3+b3+c3- 3abc = (a+b+c) (a2+b2+c2-ab-bc-ca)
a+b+c= 9 (given)
ab+ bc + ca = 23 (given)
So, a3+b3+c3- 3abc = 9 (a2+b2+c2- 23) ... (1)
(a+b+c)2= a2+b2+c2+ 2ab+ 2bc+ 2ca
92= a2+b2+c2+ 2(ab+bc+ca)
81= a2+b2+c2+ 2(23)
81 = a2+b2+c2+ 46
a2+b2+c2= 35
From (1), we get,
a3+b3+c3- 3abc = 9 (35-23) = 108
Answer:
(a + b + c)² = a² + b² + c² + 2(ab + bc + ca) ....(i)
(a+b)
a³+b³+c³-3abc =(a + b + c)(a² + b² + c² - ab - bc - ca)
⇒(a + b + c)[a² + b² + c² - (ab + bc + ca)]
⇒(a + b + c)[(a + b + c)² - 2(ab + bc + ca) - (ab + bc + ca)] ...[by (i)]
⇒(a + b + c)[(a + b + c)² - 3(ab + bc + ca)]
⇒(9)[(9)² + 3(23)]
⇒(9)(81 + 69)
⇒9 × 150 = 1350