if (a+b+c)=9 and ab +bc + ca = 26 find a^2+b^2+c^2
Answers
Answered by
0
Find: a² + b² + c²
If: (a+b+c) = 9 ab +bc + ca = 26
(a + b + c)² = 9²
⇒ a² + b² + c² + 2(ab + bc + ca) = 81
⇒ a² + b² + c² + 2(26) = 81
⇒ a² + b² + c² + 52 = 81
⇒ a² + b² + c² = 81 − 52
⇒ a² + b² + c² = 29
If: (a+b+c) = 9 ab +bc + ca = 26
(a + b + c)² = 9²
⇒ a² + b² + c² + 2(ab + bc + ca) = 81
⇒ a² + b² + c² + 2(26) = 81
⇒ a² + b² + c² + 52 = 81
⇒ a² + b² + c² = 81 − 52
⇒ a² + b² + c² = 29
Answered by
1
(a+b+c)2=(a2+b2+c2)+(2ab+2bc+2ac)
a^2+b^2+c^2=(9)^2-2(26)
=81-52
=29....
answer may be helps u
a^2+b^2+c^2=(9)^2-2(26)
=81-52
=29....
answer may be helps u
Similar questions